Những câu hỏi liên quan
Rhider
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
tth_new
14 tháng 6 2019 lúc 14:22

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

Bình luận (0)
tth_new
14 tháng 6 2019 lúc 16:35

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

Bình luận (0)
tth_new
14 tháng 6 2019 lúc 14:19

10/Thêm \(\frac{b}{a}-2\) ở mỗi vế ta cần chứng minh:

\(\frac{\left(a-b\right)^2}{ab}+\frac{b}{c}\ge\frac{4a}{a+c}+\frac{b}{a}-2\) (vận dùng đẳng thức \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\))

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{4a^2+ab+bc-2a\left(a+c\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{2a^2+a\left(b-c\right)+c\left(b-a\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{\left(c\left(a-b\right)^2+ab^2\right)\left(a+c\right)}{abc\left(a+c\right)}-\frac{\left(2a^2+a\left(b-c\right)+c\left(b-a\right)\right)bc}{abc\left(a+c\right)}\ge0\)

Em làm tắt tiếp:v

\(\Leftrightarrow\frac{a\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{abc\left(a+c\right)}\ge0\)\(\Leftrightarrow\frac{\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{bc\left(a+c\right)}\ge0\)

Áp dụng BĐT AM-GM ta được: \(VT\ge\frac{4\sqrt[4]{\left(abc\right)^4}-4abc}{bc\left(a+c\right)}=\frac{0}{bc\left(a+c\right)}=0\)

Ta có Q.E.D. 

P/s: Đúng không ta? Mà sao có người tk sai nhỉ?

Bình luận (0)
Phan Thanh Tâm
Xem chi tiết
quang08
31 tháng 8 2021 lúc 9:16

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c

Bình luận (0)
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 8 2021 lúc 20:48

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

Bình luận (1)
Nguyễn Việt Lâm
1 tháng 9 2021 lúc 15:30

Chia 2 vế cho \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\) BĐT trở thành:

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}+\dfrac{1}{b^4\left(a+1\right)\left(c+1\right)}+\dfrac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\dfrac{3}{4}\)

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\) \(\Rightarrow xyz=1\)

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}=\dfrac{x^4}{\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)}=\dfrac{x^4yz}{\left(y+1\right)\left(z+1\right)}=\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}\)

Do đó BĐT trở thành:

\(\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}+\dfrac{y^3}{\left(x+1\right)\left(z+1\right)}+\dfrac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\dfrac{3}{4}\)

Một bài toán quen thuộc

Bình luận (0)
Minh Đào
Xem chi tiết
Hoan Nguyen
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Thị Ngọc Anh
10 tháng 1 2022 lúc 8:36

Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm

Bình luận (0)
Phạm Duy Phát
Xem chi tiết
Hồng Quang
20 tháng 2 2021 lúc 9:17

Đặt\(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2+}+\dfrac{1}{2}\left(ab+bc+ca\right)\) 

Bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) (1)

Chứng minh bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\sqrt[3]{abc.\dfrac{1}{abc}}=9\left(\forall a,b,c\ge0\right)\) 

Kết hợp điều kiện đề bài ta được: \(a+b+c\ge3\)

Ta có: \(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2\sqrt{b^2}}=\dfrac{ab}{2}\) ( AM-GM cho 2 số không âm 1 và b^2 )

\(\Rightarrow\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\left(1\right)\)

Chứng minh hoàn toàn tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\left(2\right)\)

\(\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\left(3\right)\)

Cộng (1),(2),(3) vế theo vế thu được: \(P\ge a+b+c=3\)

Dấu "=" xảy ra tại a=b=c=1

 

Bình luận (0)
Lê Quang Minh
20 tháng 2 2021 lúc 20:15

Cách gundefinediải của

Bình luận (0)